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Abstract

Any real-valued nonlinear function in 0-1 variables can be

rewritten as a multilinear function. We discuss classes of lower and

upper bounding linear expressions for multilinear functions in 0-1

variables. For any multilinear inequality in 0-1 variables, we define

an equivalent family of linear inequalities. This family contains the

well known system of generalized covering inequalities, as well as other

linear equivalents of the multilinear inequality that are more compact,

i.e., of smaller cardinality. In a companion paper•.-Ive discuss

dominance relations between various linear equivalents of a tmltilinear

inequality, and describe a class of algorithms for multilinear 0-1

programming based on these results.
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NONLInEAR 0-1 PROGRAMING:
Distribu~ition/ '"

I. LINEARIZATION TECHNIQUES -i""r

by Dist L

Egon Balas and Joseph B. Mazzola...

1. Introduction .:.:

copy

It is well known [151 that a real-valued function f(x) in 0-1 4

variables can be rewritten as a multilinear function in the same variables,

i.e.,-::

(1) f (x) E a( rt xi x~ 0 or 1, is UQ
JGN JieQ1  j N

where a1 , JcN, are real numbers, and Tr means product. Thus, without loss of

generality, when discussing nonlinear 0-1 programs it is sufficient to con- 1!

sider the general multilinear program

(MLP) max(fo(x)l fk(x) : bk, keK, x binary),

where f and fk' kcK, are multilinear functions of the form (1).

The subject of nonlinear 0-1 programming has received considerable

attention in the literature (see for example r8-9, 20, 1-3, 17, 14, 19,

10-11, 5, 12-13, 16]. For a survey of the area, see Hansen r181.

Applications involving nonlinear 0-1 programs arise in a variety.71

of areas. For a partial list of these, along with references, see our

companion paper [7].

The most frequently used approach to solving (MLP) consists of

linearizing the problem and then solving the resulting linear 0-1 program.

An early linearization, due to Fortet [8, 91, involves the replacement of
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every distinct product of 0-1 variables by a new 0-1 variable and a pair

of new inequalities. This approach, while useful when there are only a

few distinct products of 0-1 variables, becomes less and less practical as

the number of such products increases. Glover and Woolsey (10, ll] pointed

out that under certain conditions the number of new constraints can be

reduced, and the now 0-1 variables can be replaced by continuous variables.

A linearization of (MLP) that does not require new variables was

given by Granot and Hammer (141, who have shown (MLP) to be equivalent to

a generalized covering problem, i.e., a set covering problem in the original

variables and their complements. While the number of covering inequalities

in this formulation tends to be exponential in the number of variables,

Granot, Granot and Kallberg [13] (see also Granot and Granot [121) have

recently used this linearization in an algorithm that generates the constraints

sequentially, as needed, and for relatively sparse problems manages to avoid

producing an excessively large number of them.

In this paper we develop a new linearization for nonlinear functions

and inequalities in 0-1 variables, which uses only the original variables.

Our results were first presented in [51 and then circulated under [6].

In section 2, we introduce some families of lower and upper bounding

affine functions for the multilinear function f(x) of (1). We start by

assuming that aj > 0, JON, and define a family Z of affine functions gM(x),

one for every MQN, such that gM(x) < f(x) for all binary x, and Z is

complete in the sense that for every binary x some function in ? is equal to

f(x) . We then identify a proper subfamily of Z that is also complete.

Next we define a family 'L of linear functions h (x), one for every mapping
A CP

I° .-
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w that associates to any set one of its elements, such that h (x) f(x)

for all binary x, and U is complete. We then identify a proper subfamily

of 14 that is also complete. We establish several properties of these families

of lower and upper bounding functions, and then combine the above results

to define a (complete) family i 0 of lower bounding affine functions for a

multilinear function f(x) with coefficients a of arbitrary sign.

In section 3, we turn to inequalities of the form

(2) f(x) <b

where f(x) is the multilinear function given by (1) and x is binary. For

a multilinear inequality (2) in 0-1 variables, we introduce a family $ of

linear inequalities, equivalent to (2) in the sense of having the same solu-

tion set. The members of Y correspond to subsets of N that are covers for

the inequality (2). The familyY strictly contains the family of generalized

covering inequalities defined in [14]. More specifically, the generalized

covering inequalities are those members of 9 associated with minimal covers

for (2). Furthermore, 7 typically contains more compact linearizations of

(2) than the family of generalized covering inequalities, i.e., linear

equivalents of (2) that are of smaller cardinality than the latter family.

These more compact linearizations are associated with covers for (2) that

are not minimal.

In a companion paper [7], we characterize certain dominance relations

between members of the family Y, and give a procedure for strengthening

inequalities of 5 that satisfy certain conditions. Based on this, we have

developed and implemented a class of algorithms for multilinear 0-1 progrms

that we describe in [7], where we also discuss our computational experience.

r'..'° r
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2. Lower and Upper Bounding Affine Functions

Consider the multilinear function (1) of section 1, and for any

M N, let = U Qj, and let Q = QN' q - IQI. Also, for any x '0,1}q ,

let Q(x) = [i6Qlxi M 1] be the support of x. A function g(x) is said to

be a lower (upper) bounding function for f(x) if f(x) > g(x) (f(x) < g(x))

for all x c 0,1 .e

In what follows, sunnation over the empty set is always taken to

yield zero.

Lena 1. For J N, define

(3) pj(X) = V r , (x) x QJI + I.
ij xQj

Then for every jcN and x C (0,lg q

(4) Pj(X) > 0 j(X) s ,

and

pj(X) = 0 if and only if IQj\Q(x)l _ I,
(5)

pj(X) sj(x) if and only if IQ \Q(x)l I.

Proof. (4) follows from (3), while (5) follows from (3), (4) and

the definition of Q(x).I

Next we introduce a family of lower bounding affine functions for

a given f(x) with positive coefficients. The family has a member for every

subset of N.

Theorem 1. Let f(x) be as in (1), with aj > 0, JeN, and for every MgN,

iefine

(C- ),(x) = Z ( a-xi - E (IQ I-l)aj.
itQM J M i CQ jM

-p7

-p+
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Then every x e (0,l]q satisfies the inequality

(7)M f(x) > Sr(x)

for every MeN, and (4)M holds with equality if and only if

(8) (JiNI I1Q\Q(x) 1 0) M r (JNi 1QJ\Q(x) 1 - 1).

Proof. Since

f(x) = E a p (x)
JCN

and for any M c N

gM(x) = 9 W(

(7)M follows from (4). Further, from the definitions f(x) - gM(x) if

and only if p (x) -0 for JCN\M and pj(X) - 51 (x) for JiM, and therefore

(5) implies (8)..

Remark I. For every x e [0,I q , there exists some M N such that

f(x) - M(x).

Proof. Set M - JNIQj QQ(x)]. Then x and M satisfy (8), hence

f(x) - g(x).I

th
Denoting by f (x) the j term of f(x) in (1) and applying Theorem I

to fj(x), we obtain fj(x) gj](x). Furthermore, we have

Remark 2. gM(x) = gJCx).

Proof. By applying the definition of gM(x) to (J) for each JiM.i"
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Remark 3. For all Mr-N and XeRiX1 such that 0 < X <1, j~M,

for all x c 01q

N Proof. Follows from X >: 0, icH, f (x) >: g~j1 (x), JeM, and

f(x) E E (
eM

When f(x) is a quadratic function, the family of lower bounding

* functions given by (7)M specializes to the one defined by Hammer, Hansen

* and Simeone [161.

A set ~$of lower (upper) bounding functions h(x) for f(x) will be

called complete if for every x e (0,l3q there exists h e 3t such that h(x) =f(x).

From Remark 1, the set ;e = N1 (x) IXMQN) is complete. Since at is fairly

large (I1e- = 2I~) it is of interest to find proper subsets of Z that are

complete. Next we identify one such subset.

For any M CN, define

E(M) - [JCNjIQJ\ 141 < 13.

Clearly, M rE(M) for all M rN. Also, note that for arbitrary subsets

HI, M 2 ;N, M, 0 M2 does not imply E(M1 ) 0 # M)

Consider now the family

el g M ()MQN
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of lower bounding functions for f(x), whose cardinality is typically much

smaller than that of .

Theorem 2. Let f(x) be as in (1), with a > 0, JeN. Then is a

complete set of lower bounding functions for f(x).

Proof. For a given x e 0,1 q , define L fiJcNIQj Q QWx)]. Then

E(L) € and condition (8) is satisfied for M = E(L), which implies

f(x) - sE(L)(x). Since this is true for every x C [0,13 q, e is complete.[

Remark 4. For every MQN, there exists some x e (0,1 )
q such that

f(x) = (M)(x)

Proof. For given MCN, let i be defined by Q(X) = U Qj. Then
jeM

(jeNIIQ \Q(x f 0) 9 E(M) .iNIIQj\Q(0)I

and hence, from Theorem 1, f(-) SE(M)(x).I

Note that, while every lower bounding function in ? is "attained" by

f(x) for some x g 0 the same is not true in general with respect to

the larger family . For example, let

f(x) =x xx + x +X + + xx + xx1 23 x4'5 14 1 5 2 5 3x4'

and choose M = (1,2), where Q1 (1,2,31, Q2 = (4,5). Then the lower bounding

function

s(l,2(x) =x + x2 + x3 + x4 + x5 -3

is not equal to f(x) for any x e (0,1 5..

Next we illustrate the families and on an example.
-to]

Exampla 1. Let

f(x) * 3XlX2x 3 + 2x1X4 + x2x3x4. .

Z °.
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Then Q 1 (,2.3), Q2 =(1,4], Q 3 -(2,3,41, and

- 5x1 + 4x2 + 4x3 + Ux4 -10

5x + 3x2 + 3x + 2x- 8

g(2,3] 1 2 + 43

-3x + 4x + 4x+ x4 8

9[) 2xi + 2x 4  2

9(31 = 2 + 3  4

0

A complete system of lower bounding functions consists of

(9(g 1 2, 3 ) g(21- gO)

since for all MC (1,2,3), M 1 2], 0, we have E(M) = £,2,33.I

We nov turn to upper bounding linear functions for f(x). Let CP

be a mapping that associates to every JeN some icj i.e., cp(i)eQ,, JCN,

and let 0 be the set of all such mappings.

Theorem 3. Let f(x) be as in (1), with a >0, JeN. For cpe§, define

h (x)= a ax
jeN i

Then every x C f0,l1q satisfies the inequality

(9) f (x) <h (x)

for every cp§ and (9) holds as equality, if and only if cp(j) cQ \Q(x) for

all JgN such that Q -,~)00
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Proof. For a given x e (O,11% define M = JeNIQ j GQ(x)}. Then for

every CP

f(x) = La (by the choice of M)
jcM

(10)-- E a x = h (x) (since aj > 0, JeN),
jeN

i.e., (9) is satisfied.

If C(i) eQj\Q(x) for all JeN such that Qj\Q(x) # 0, then x = 0,

V JeN\M, and the inequality in (10), hence in (9)V holds as equality.

Conversely, if cp(j) eQ nQ(x) for some JeN\M, then x (j)= 1 and (9) holds

as strict inequality since a > 0, JeN.f

jjRemark 5. if f(x) is as in (1) but with a, < 0, JcN, r,'~en for every "'

CP s, h (x) is a lower bounding linear function for f(x).

Proof. Applying Theorem 3 to -f(x) yields -f(x) < -h (x), CP e .I

Remark 6. For every cp e there exists some x c0, 11q for which

f(x) = h W(x).

Proof. Both x 0 and x = e, where e = (1...,l), produce equality

in (9)o for all cpe§.

Remark 7. For every x 9 (0,1}q . there exists some cp e such that

f(x) = h (x).

Proof. Use any mapping satisfying cp(Q.) eQ \Q(x) for all JeN such

that Q \Q(x) A 0; then (9) holds as equality.11

Thus the family

of upper bounding functions for f(x) is complete in the above defined sense.

.".:**.* **. *.. J.. **'..*

* . .*•* * . . ... - . .~..
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There is actually a more general class of upper bounding linear functions

for f(x), namely

Remark 8. Let f(x) be as in (1) with ai > 0, JcN, and let

i eQ1 JcN be nonnegative numbers satisfying

ii , JeN.

Define

h(X,x) jE a( E xi)

ii eq

Then every x c (O'l]q satisfies the inequality

f(x) < h(k,x)

for every X > 0 satisfying (11).

Proof. For x e(01q

h0., x) Z a( 2 X)
jeN iCQ flQ(x)

JCNIQ1 QQ(x) isjQ ii

Je- aQx = J xj

Like in the case of lower bounding functions, when f(x) is a quadratic

function, the class of upper bounding functions defined in Remark 8 specializes

to the one introduced by Hammer, Hansen and Simeone [161.

The family 74 introduced earlier in this section consists of those

h(k,x) such that

f or i q p(j)
* ji

ior i w~)

.......................

%*****~.~*.~:-.*..* ~ . ~.~..:~ . :



Since the set 74 is complete and already very large (not excluding

repetitions, Tr l~) we will not consider further the more general
4~j eN

class of functions defined in Remark 8, but rather move in the opposite

direction of identifying a proper subset of ?(that is complete.

For any cp let Q(Tp) denote the range of cp, i.e.,

Q (cP) = (iQi cq:(j) for some j eN.

We will say that a mapping cpe is sequence-related if there exists a

permutation < i1,... im > Of the elements of QQP), with the property that for .

L ~k - l,...,mv ik - cp(J) for all JoN such that ikCQ i but 1i41QQ for 4 = 1,...,k-1.

We will say that ac = < i i.. > is the sequence associated with the

mapping tP. To put it differently, a mapping 9 et is sequence-related if it

can be generated as follows. Define Q -U Q. Starting with Q defined

by S =N, choose some i gQ and set i = p(j) for all JgN such that igQ;

then redefine Q by setting S S\(JgNji gQs] and apply the procedure again,

stopping when Q becomes empty.

Example 2. Let Q (1,2,3), Q2  (1,4,5), Q3  (2,5}. Then each of

the mappings cpl, cP2, tP3 , defined as

cp3(1) =1, cp3(2) = 4, 'cp(3) = 2,

is sequence-related, with the associated sequences <1,2>, <5,1> and <4,1,2>

respectively; but the mapping

cP(l 1, c94(2) -5, ~p 4(3) -2

'Z.%

. L.
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is not sequence-related, since for any permutation of the indices 1,5,2,

if i denotes the first index, then ieQ for some j such that c(j) # i.11

Let I =(t e cp is sequence-related), and

14 h CP(x) lCPe] C

It can be shown (see below) that ' is a complete set of upper bounding

functions for f(x). However, it turns out that §' can be further restricted

without losing completeness.

Let V be an arbitrary set with lVi = v, and let 9 be the set of all

permutations of the elements of V. For any S V, a permutation p eC will be

said to represent in 6 the 2-partition (S, V\S) of V, if every element of S

precedes every element of V\S in p. In other words, the permutation

p = <i1,...,i v >represents the partition (S, V\S) if ik eS and it " V\S

imply k < 4. A set of permutations PC will be called representative (of

the 2-partitions of V), if for every S'rV, the partition (S, V\S) is
N. -

represented in P.

Example 3. Representative sets of permutations for V1 = (1,2,31 and

V2 = (1,2,3,4) are P and P

21 P2 9

p. 12* P 123*
13* 124*

23* 134*

234*

14 ** °

24 ** -'

3 4**

4***

- *5 .- % -M.
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where a star in some p e P1 stands for an arbitrary element of V not yet

used in p. The 2-partition represented by a permutation p consists of the

nonstarred versus the starred portions of p. Thus, for example, p - <1,2,3,*>

represents the 2-partition ((1,2,31, (4); similarly, p -<2,4,*,*> represents

((2,41, (1,31), etc.11

While the cardinality of ? is v!, that of a representative subset

PC9 is only 2 v-l

Consider now the set of sequence-related mappings V. For any S Q,

we say that a mapping cp e with associated sequence 8, = < il...,i m > ,

represents the 2-partition (S, Q\S), if a is a subsequence of some permuta-

tion p < j' . jq > of the elements of Q, that represents (S, Q\S). A

set T C' of sequence-related mappings will be called representative (of the

2-partitions of Q) if every 2-partition of Q is represented in Y.

Ncw let YT C' be representative, and define

Theorem 4. Let f(x) be as in (1), with aj > 0, JeN. Then is a

complete set of upper bounding functions for f(x).

Proof. For an arbitrary x c (0,1]q let 9 eY be the mapping that

represents the partition (Q\Q(x), Q(x)) of Q (here, as before,

Q(x) is the support of x). Let s = < ip ... ,i > be the sequence associated
m

with cp, and let p = < jl"'"*J'q > be a permutation of the elements of Q that

represents (Q\Q(x), Q(x)), such that s9 is a subsequence of p.

%
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Now i f i M Q\Q(x), then i t Q\Q(x) fortC ,..m and h Wx 0 -f(x).

Otherwise, let h and k, respectively, be the greatest integers such that

i \~)and Jke \ux. hn '(\Q(x) - Jl'"'.k and ti,.,ijQ\Q(C),

.ih'l i. . . ..Q(x). Denote
N0 l. .-.. i.

Clearly, No U N, - N. Since P is related to the sequence s ; Q

for e (1,...,h) and JN, hence Q QQ(x) for all JeN,. Therefore Q \Q(x ) A 0

implies j eN0, which in turn implies b (j)hQ\Q(x); i.e., the condition of

Theorem 3 holds for all je such that Q \.(x) A& 0. Therefore f(x) h (x)lI-

Example 4. As in Example 1, let

f(x) = 3xx + 2x.. + x x .

The set 0 of all mappings that associate to each jgtl,2,3} some ieQ.

contains IQ11 X IQ1XI3 - 18 elements, and the corresponding 18 upper

bounding functions h (x), cpef happen to be pairvise distinct. However, a

complete set u of upper bounding functions is defined by the representative

set of sequence-related mappings associated with the set P2 of Example 3

(where Q (0,23,4} plays the role of V

h (x) - 5x +x
1 2

h WX-n5xl +23

h W )5x + x1 4

h ()4 2  + 2x4
'P4

h W - 43 3 + 2x4

h x) 2+24. 3x 3+x
"V6

-.A- .. A.. .:., :. *:: ~
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The mappings q~, k - I,...,6, correspond to the following

permutations p e P2:

k 1 2 3 4 5 6

peP 123* 134* 14* 234* 34** 4***

1 2 4* 2 4**

Where a mapping corresponds to more than one p eP2 as for k - 1,4,

this is because different permutations containing a certain subsequence

< il,..,i m > give rise to a single mapping cp Y related to that subsequence.

Thus, in the case of k = 1, sC = < 1,2 >, and in the case of k - 4, stp M < 2,4 >.1

At this point we note the existence of another class of upper bounding

(affine) functions for f(x), that can be derived by using the following

observation. Let Q be a set whose elements are ordered in some arbitrary

way, Q = (1,...,q3, and let a be an arbitrary positive scalar. Denoting 4'

x - 1 -x i for ieQ, it can be shown that

q-1 q-2 ---

(12) -a TT x- x a(x -+ lxl + """+X2xtl+X " 1).X-+'""

i CQ 1-l i-l

Note that the right hand side of (12) has q = IQI variable terms (each

one containing exactly one complemented variable) and a constant term.

Thus for any f(x) of the form (1) with a > 0, JeN, using (12) one can

write

-f(x) = p(x,x),

where p is a multilinear function of the variables xi and their complements

i xi, Qs, j N, with coefficients aj > 0 and with IQ terms for each JeN.

.. *- . . .. . . ...* .% . . . . . .* . *-. -
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The subscript a refers to the particular ordering of the sets Qj, Jg, which

was used in (12) to derive p (x,x). Taking any a and applying Theorem 1,

one can derive a family of lower bounding functions gM(xx) for p(x,;),

one for each set of the form M - U Mi. where Mi QQJ JcN. Substituting

for xi, igQj, JgN, one obtains the corresponding functions M(x) (- gm(x'x))

in the variables xi, and by changing signs, the affine upper bounding functions

- g (x) for f(x).

For a given f(x) of the form (1), there are Tr (IQjlI) different func-

tions p (x,x) such that p,(x,x) = - f(x), and for each a, there are n 21 I '
j CN

lower bounding functions gM(x,x) (not necessarily all distinct) for po(x,x),

hence upper bounding functions - ^(x) for f(x). However, as stated in the

next theorem, every such upper bounding affine function is dominated by some

linear function in the class 7.

To simplify the notation, we will assume that f(x) has a single term,

i.e., the equation - f(x) = p (x,x) is as in (12). In view of Remark 2, this

implies no loss of generality. Further, we shall let each of the IQI = q

terms of p (x,x) be indexed by the index of its (unique) complemented variable.

Theorem 5. Let MQQ, M [il,.. 9,im] with ik < i whenever k < A. Then

axi _<- W

m

for every x c (o,1]q.

Proof. Applying Theorem 1 to p (x,x), we obtain the lower bounding

function

m k
g-(xx) =a[ (xk + 1; x -(i

or

.' _ .. . . -. . , . . . . _ ,s, . . . . . . . . . . ... .. *. -. . . *. . . , .:.. ,. ,. . .- .- . .. , ,.. ... . * > ; ' 1 . . .'; '.
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m -
(x) =- a[ E(x E xi + ik 2) + 11.

Therefore

g(x)- ax1  + a a (x)

where
i -i ik-IL
m m-i k

(13) ax W (i - E x )+ E(ik 2 + " x i),"
i=1 k=l( k =1

and to prove the theorem we have to show that o(x) > 0 for all x 4 *0,I~
q .

Note that for k = 1,...,m - 1,

k x k' 1 -1 if xi = 1, 1 = ,""'k - 1, and x k 0

tk i1l 0 otherwise

and

m= 0 if x =I, i=,...,i -- "

J=1 > 1 otherwise

Since x .0 for some k e m excludes x 1, i 1

for any 4 > k, at most one term under the sumation sign in (13) can be negative,

and if there exists such a term, then

m
i- - E xl>I.

Thus for any x g (0 ,1 1q, a(x) >0, hence - (x) > ax1 .
gmn

The relation (12) can be used in the reverse direction too; i.e., in

order to derive a set of lower bounding functions for some f(x) as in (1),

• ~ p .*,. , j P %:: :.~ % . .. 4 . % :, ::. ° . 4.. ,'o
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with aj > 0, JCN, one can use Theorem 3 to derive a set of upper bounding

linear functions h (x,x) for p (xx) = - f(x), and then substitute for xi, V i,
Ot

to obtain a set of functions 6 (x), whose negatives, - 6 (x), are lower

bounding functions for f(x). In this case one recovers the lower bounding

function gN(x),by using the mapping c which associates to the index set of

each term of p (x,x), the index of its complemented variable. The functions

8,(x), M5N, can be recovered by using the same mapping for jaM, while for

jCN\M one uses a mapping that produces a lower bounding function identically

equal to zero. When the number of terms of p (x,x) corresponding to the ith
term of f(x) is even, this is accomplished by any mapping that produces

pairwise complementary images. When it is odd, one has to use the construc-

tion of Remark 8 to find a lower bounding function that vanishes for all

x C. (O,)(q.

All other lower bounding functions that one obtains via this procedure

are uninteresting because they cannot take on a positive value for any

x g,1 q.

We conclude this section by combining the above results to derive a

family of lower bounding functions for f(x) as in (1), with coefficients a'

of arbitrary sign. Let ;+ =iNIaj ' 0), N - (JCN~aj < 0], and

f() W a T x f(x) E a. r x.

For every MQN+ , let

gM(x) ) (IQ -- -)ajiCQM JMiCQ aJ (II -'

as in Theorem 1. Let t" be the family of mappings c that associate to every

jaN some i c.Qj and for every .. let

~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ "__ _ _ ,
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The function h-(x) differs from the function h ()of Theorem 3 only, in
cpIthat here the coefficients a are negative.

Theorem 6. Let f(x) be as in (1). Then every x gOl satisfies

(14) f(x) gmd(x) + h_(x)

for every M-N+ and every qcuie Further, (14) holds as equality if

and only if

(15) (i1 e Q \Q(X)I =0] Q M ( £i6NlIQj\ ) A 1]

*and for all j eN such that Q \Q(x) A 0,

S(16) C'(jC Q \Q(x).
Proof. The theorem follows directly from Theorems 1 and 3 and the

fact that a vector x e (Q,llq satisfies (14)M with equality if and only

S if it satisfies with equality both

(17) f(x W g.M(x)

and

(18) f-(x) > h-(x).II
-CP

Next we define a subfamily of the lover bounding functions introduced

in Theorem 6, that is complete.

For every M QN , let E(M) be defined as in Theorem 2, and let

m(9 £E()(x)M~eb

Further, let T_ -0 be a representative set of sequence-related

MAPPings as defined earlier, and let

-0~~ %* .0 J
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= h(zIpc3

Finally, define the let

(g (M) (x) + h-(x) M aN+ and cp eY T-

Theorem 7. J 0 is a complete set of lover bounding functions for f(x).
0+

Proof. Follows from the completeness of 4and J
0p

3. Linearizing Multilinear Inequalities in 0-1 Variables

in this section we linearize the multilinear inequality

(2) f (x)= a ri x )b
jeNJ e

by defining a family 9 of linear inequalities, equivalent to (2) in the sense

that a 0-1 vector x satisfies f(x) <b if and only if it satisfies the linear

inequalities in Y.

We continue to use the notation introduced earlier. In particular,

N, , f (s) and f-(x) are as in Theorem 6.

A set MQ~N is said to be a coer for the inequality (2), if

JCM J ~ r

A cover M is said to be mini1mual if T is not a cover for any T M.

It follows from this definition that a set M-N+ is a cover for the

inequality

(2Z) f+(x) <b

if and only if

F a~ > b.
&o
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Theorem 8. Let VL- -q

(Mr -Mle is a cover for ,

and let g(x), h (x) and " be as in Theorem 6. Then x, £O,l)q satisfies (2)

if and only if it satisfies-

( 19 )), s1(1) + h(x) . b

for every MoC and cpu e

Proof. From Theorem 6, if xe (0,1 q satisfies (2), then

gm(x) + h (x) f(x) < b

+

for every p e " and every MC N , hence every Mo C. This proves the "only if"

part of the Theorem. To prove the "if" part, suppose f(l) > b for some

i 9 (0,1] q . From Theorem 6, there exists MO N+ and c0 e" such that

(20) 8o (R) + ho (i) f(M) > b,

i.e., x violates the inequality (19)0,c . It remains to be shown that MO

is a cover for (2+). We have

~ Is 8.. o() (from the definition of
JsM 0 0

> b - h X() (from (20))

CP0

> b (since - h(i) >0),

hence is a cover for

Let 9 be the system of linear inequalities (19)M,V, for all M €a and

7 t . According to Theorem 8, the system 3 is equivalent to (has the same

solution set as) the nonlinear inequality (2). As one may suspect from

0- . -
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Theorem 7, 9 is not a minimal set with this property. Indeed, for M N+ ,

let E(M) be defined as in Theorem 2; and let " at be a set of representative

sequence-related mappings. We then have

Theorem 9. Theorem 8 remains true if the system (1 9 )M,, V - and

Me C is replaced by

(2 1 )M, 9 
8E(M)(x) - h (x) < b,

for every Me and 9¢e .

Proof. Along the same lines as the proof of Theorem 8, using the

fact that, from Theorem 7, there exists MQN and v0 c T such that

E( ) ( x ) + h i) f f(:j)oHi-

00

Since '" is a proper subset of " and different sets M QN + under

certain conditions give rise to the same set E(M), the system 0 of linear
0

inequalities (2 1)M,' MgP , me T', is a proper subset of 3, and usually of

much smaller cardinality.

It is sometimes desirable to use an alternative linearization of

the nonlinear inequality (2), obtained by first replacing (2) with an

equivalent system of (nonlinear) inequalities whose coefficients are

all positive, and then linearizing this system. The first of these two

steps is easily accomplished by replacing f (x) in (2) with the family

of lower bounding functions h (x), p e , and then complementing xj, J N':

Theorem 10. A vector x e (0,I)q satisfies (2) if and only if it "-' "

satisfies

(22), f+(x) + E (a (J < b -Z

Pj eN_ e N

for every c e Y-.

J • .- .

% '-A. -* % ,...- ....--. > ....-. >- ;-*--*'.* *% '..' : .-.-.--- ... '%> %.. .. .- % V% :
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Proof. The "only if" part follows from the fact that

(23) E a xm(J < f'(x),.%, " j ) )-"

for all 9 CY'. The "if" part follows from the fact that the set of lower

bounding functions h-(x), e€Y, for f'(x), is complete.11

Remark 9. Theorem 10 remains true if T" is replaced by '.

Note that if we first replace (2) by the family (22)V, ;pe€ and then

generate the sets g 0 of linear inequalities equivalent to each inequality (22),.

we end up with a family = U S of linear inequalities that is a proper

superset of the family 9 generated directly from (2). The reason for 6"

this is that, applying Theorem 8 to an inequality (
22),a produces a linear

inequality for every cover MQN for (22) . hence for (2); whereas applying

it to the inequality (2), produces linear inequalities only for covers

MQ e for (2+). it is easy to see that if M, QN and M2 QN are covers for

(2), we may have M # M2, but MIln N+ - m n  On the other hand, MeQ is a

cover for (2) if and only if MUN" is a cover for (2 2 ), V v e . Thus the

system of linear inequalities 9, obtained by applying Theorem 8 directly to

(2), is the subsystem of i whose inequalities correspond to those covers

MeN such that N'QM.

Next we turn to another way of using complements of the variables.

By reversing the sense of the inequality in the system ( 19 )M,' MeCC, CPCV,

and complementing the variables x,, ic M, an immediate strengthening of some

inequalities can often be obtained. For any p e, we will again denote

Q - fi cQl cp(j) for some j N'].

Theorem 11. The vector x e (0,1]q satisfies (2) if and only if it satisfies

(24 Z ixi+ E ,
S- -~- . 'i iQ

* ~ ~*~ ~ * QM
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for every M e 0, egC where

E a ~b (> 0),

M

j £Ml iCQ1

and

Proof. Substituting for gm(2C) and h-fx) in (1)MC their expressions

in terms of the coefficients a1, Js14, yields

(19) E a~..... a)x + E a x <b + E (IQ1 I 1)a~
irq ieM~iCQ j6N - Wg

Substituting 1 - x i for xi, 1iCQM and J ail for ai, JscN, and collecting

terms freach i s Q ,then changing the sign of the inequality, produces

iCQM JgM~ieQ jsl4 f-l-C~) d

since HCtergthn ieo 2)i oiie

Finally, since all coefficients of (25) are positive, each coefficient

whose value exceeds that of the right hand side can be reduced to the value

of the latter, without cutting off any 0-1 point x satisfying (25).',

N~ote that if for some i eMand JeN we have i then ()24the

has a term in xand one in xi. Each such pair can obviously be reduced to a
i

single term, with a corresponding adjustment of the constant on the right
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hand side. Since this adjustment reduces the value of the right hand side,

the presence of such terms denotes a certain "weakness" of the inequality.

This weakness can partly be made up by reducing those coefficients on

the left hand side whose value exceeds the new value of the right hand

side. To be specific, let us denote

Q0+ =  i £QMI # cp(J), V jcN'"

Q = (ie,)Ii = c(j) for some jeN-, and QM>

Q- (ieQ\QMli 9(j) for some jN]

Q-= [i Q~1 i = cp(j) for some jcN- and 01 >

and let Q QoUQ Q Q;UQ1 ,.

Theorem 12. For any x e (0111 the inequality (24) M, implies -
(26)M, Y -- + E > Y0':

i CQ+ i x l  i " yx i - 0

where

ieQ i6Q~

and

+ -

=y mit-O iY)Q UQ

with
M +Hi i eQO

M P i CQ+

i e%
'P 0

• - -gQ

Proof. For i QP

M - 1'0 'i + i i i i



-. .. .... . . ..- .::

-26-

while for i c Q1

M- M Ma x +  z +  Gi

Substituting these expressions into (24)MC yields

ie i sQ Y

and replacing 'Y with mintyO, Yj1} produces (26)M',.II

For MQN+, denote C(M) HUN. Note that C(M) is a cover for (2)

if and only if M is a cover for (2+). If C(M) is a minimal cover for (2),

+ _then M is a minimal cover for (2 ); but the converse is not true. On the

other hand, if M is a minimal cover for (2+) and Iai > mn ai for all J.N,
icM

then C(M) is a minimal covcr for (2).

Theorem 13. Let C(M) be a minimal cover for (2). Then C', aM, C QM

i a0 0 ) 1CQ~, and CI > 0. Further, if (J) c COW * JcN" (i.e.,

QM =0), then (26) is the same as (24) which can be written as

(27) r. + E ,X >1.
ieQM i sC

Proof. Let C(M) be a minimal cover for (2). Then

(28) E laj I b - a + .aki, k eMUN
jsC(M) j

and therefore, for any iQH,

>a 
*" 6jcM i6Q kcM

> a - b =a (from (28)),

aM

which proves that 0- aO, iCQM.
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Also, for any i eQ and k6N" such that i = q(k), from (28) we have

Is I~ Is I > L a~ b b ,
J cN- I= (J) I ..

i otA jeN0 where Hx > 0 since M is a cover for (2 )
M +1 0'\

Further if cp(j) c Q\QM., AF JN, then QPUQ = 0, and y= i Q

Y , i Q" in (2 6)M,c• Thus, in this case (26) is the same as (24)

and the latter can be written as (27) M, . ]

Remark 10. If C(M) is a minimal cover for (2) and c(j)QM for some

JN', the inequality (26)M, is vacuous.
M M

Proof. If C(M) is a minimal cover for (2), then a, , 0, i and

M1 = ieQ• If, in addition, cp(j.) eQM for some J. eN-, then yo0 and

henceY = 0, i Q+ UQ, i.e., (26) is vacuous.1I

Example 5. Consider the inequality

f(x) = 3x X2x 3 + 3x2x4 + 4xlx 4 - 2xlXsX6 - x3x5 -
4xlX3X6 

< 2,

and let the sets Qi, i = 1,...,6, be numbered from left to right. Choosing

M = (1,2,31 and cp such that ;p(4) = 1, ;P(5) = c(6) = 3, one obtains the

inequality (of the form (24)M,)

7 1 + 6x 2 + 3 3 +7x 4 + 2%, + 5x3 > 8.

After reducing the terms involving the pairs (xl, x1) and (x3, x3),

one obtains

5xI + 6x2 + 7x4 + 2x 3 > 3

which in turn implies the inequality (of the form (26)

3x + 3x2 + 3 + 2x > 3.
1 2 4 3
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Now let M - (2) and c be as above; then C(M) is a minimal cover for

f(x) < 2, and P(J) cQV4, Y jeN. The corresponding inequality

X 2 + x4 + x1 + x3  l

is of the form (27) .j"
M, cp

Thus, when MQN and qp " are chosen such that C(M) is a minimal

cover for (2) and cp(j) eQ\QM for all j eN, (26)M,( takes on the form (27) M,

of a generalized covering inequality. While the generalized covering

inequalities (27) all correspond to minimal covers M N+ , the remaining

generalized covering inequalities implied by (2), corresponding to minimal
+ t.

covers MN can be derived by applying Theorem 11 to the family of in-

equalities (22) , tpe" (with M a minimal cover for (22) ) rather than

directly to (2). The set of all generalized covering inequalities corres-

ponding to minimal covers for (2) has been shown by Granot and Hamer (141

to be equivalent to (in the sense of having the same 0-1 solutions as)

the nonlinear inequality (2). However, when Theorem 11 is applied to the

inequality (2) with covers M that are not minimal, it produces linear

inequalities that are not of the generalized covering type.

These other inequalities give rise to alternative linearizations

of (2). In fact, these linearizations are typically more compact, i.e.,

involving fewer inequalities, than the family of generalized covering

inequalities. This is illustrated in the following example.

Example 6. Consider the inequality

(29) 1x 9 + 9x2x8 + 8x3x7 + 8x1x6 + 8x3x4 + 5x2x5  20.

h•
There are 20 minimal covers M for (29), and the corresponding sets .,
are shown in the table below. Each of these minimal covers gives rise

to a set covering inequality and all twenty of them are required to linearize

(29).

A ______
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No. M QM Implied by

1 1,2,3 1 2 3 7 8 9 (A)

2 1,2,4 1 2 6 8 9 (C)

3 1,2,5 1 2 3 4 8 9 (A)

4 1,2,6 1 2 5 8 9 (C)

5 1,3,4 1 3 6 7 9 (D)

6 1,3,5 1 3 4 7 9 (D)

7 1,3,6 1 2 3 5 7 9 (A)

8 1,4,5 1 3 4 6 9 (D)

9 1,4,6 1 2 5 6 9 (C)

10 1,5,6 1 2 3 4 5 9 (A)

11 2,3,4 1 2 3 6 7 8 (A)

12 2,3,5 234 7 8 (B)

13 2,3,6 2 3 5 7 8 (B)

14 2,4,5 1 2 3 4 6 8 (A)

15 2,4,6 1 2 5 6 8 (C)

16 2,5,6 2 3 4 5 8 (B)

17 3,4,5 1 34 67 (D)

18 3,4,6 1 2 3 5 6 7 (A)

19 3,5,6 2 3 4 5 7 (B)

20 4,5,6 1 2 3 4 5 6 (A)

Now, applying Theorem 11 to inequality (29) with MI = £1,2,3,4,5,61

we obtain the linear inequality (24),.

(A) 18i 4-14x2 + 16X + 8x4 4Sz +8x6 + 8x +Ox8 Gl9 > 28

Repeating this procedure with the sets M2 ( £2,3,5,6], M3 ( £1,2,4,61, and

(1 t,3,4,51, we obtain the linear inequalities

(4x2 +1x 3  48%+5x +8x 7 + 9x8  > 10

(C) 12x + 12x2  + 5x5 + 8x + 9x+ lOxg >12

(D) 14x +14x + 8 +8 + 8x7 + x>14
3• 14 6 7
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respectively. One can verify that each of the 4 inequalities (A)-(D)

implies several of the set covering inequalities, as shown in the last column

of the table, and together they are equivalent to the 20 set covering in-

equalities, i.e., to the nonlinear inequality (29).11

In the above example, none of the four covers used to obtain the

inequalities (A)-(D), was minimal. This suggests that an inequality obtained

from a minimal cover could be strengthened by extending the cover. While tL..-

was shown to be always true in the linear case [41, it turns out not to be

always true in the case discussed here. In a companion paper [71, we examine

dominance relations between the linear inequalities of the family defined by

Theorem 11, and give necessary and sufficient conditions for the extension of

a minimal cover to produce a strengthening of the associated inequality. Based

on these conditions, we have developed and implemented a class of algorithms

f or solving nonlinear 0-1 programs, that start by generating linear inequalities

from minimal covers, and then successively extend the covers to strengthen the

inequalities whenever the above mentioned conditions are met. In [71 we

describe several variants of this class of algorithms and discuss our computa-

tional experience on nonlinear 0-1 programs with up to 20 constraints, 50

variables, and 60 terms per constraint.
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